首页> 外文OA文献 >Autoregressive Moving Average Graph Filtering
【2h】

Autoregressive Moving Average Graph Filtering

机译:自回归移动平均图过滤

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the cornerstones of the field of signal processing on graphs are graphfilters, direct analogues of classical filters, but intended for signalsdefined on graphs. This work brings forth new insights on the distributed graphfiltering problem. We design a family of autoregressive moving average (ARMA)recursions, which (i) are able to approximate any desired graph frequencyresponse, and (ii) give exact solutions for tasks such as graph signaldenoising and interpolation. The design philosophy, which allows us to designthe ARMA coefficients independently from the underlying graph, renders the ARMAgraph filters suitable in static and, particularly, time-varying settings. Thelatter occur when the graph signal and/or graph are changing over time. We showthat in case of a time-varying graph signal our approach extends naturally to atwo-dimensional filter, operating concurrently in the graph and regular timedomains. We also derive sufficient conditions for filter stability when thegraph and signal are time-varying. The analytical and numerical resultspresented in this paper illustrate that ARMA graph filters are practicallyappealing for static and time-varying settings, as predicted by theoreticalderivations.
机译:图形滤波器是图形信号处理领域的基石之一,它是经典滤波器的直接类似物,但旨在用于图形上定义的信号。这项工作对分布式图形过滤问题提出了新的见解。我们设计了一个自回归移动平均(ARMA)递归系列,该递归(i)能够近似任何所需的图形频率响应,并且(ii)为诸如图形信号去噪和内插之类的任务提供精确的解决方案。这种设计理念使我们能够独立于底层图形设计ARMA系数,从而使ARMAgraph滤波器适用于静态设置,尤其是时变设置。当图形信号和/或图形随时间变化时,会发生其他情况。我们表明,在时变图信号的情况下,我们的方法自然地扩展到二维滤波器,并在图和规则时域中同时运行。当图形和信号随时间变化时,我们还为滤波器的稳定性推导了充分的条件。本文提供的分析和数值结果表明,ARMA图形滤波器实际上可以满足静态和时变设置的要求,正如理论推导所预测的那样。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号